Р. Э. Нейман (Воронежский государственный университет) Представления о явлениях гидратации в дисперсных системах существуют уже длительное время. В литературе разных лет имеются фундаментальные обзоры, в которых обобщены к соответствующему периоду обширные данные о наличии у твердых гидрофильных поверхностей граничных прослоек водной среды, обладающих особой структурой и свойствами, отличными от таковых в объеме [1, 42, 518]. […]
Архивы рубрики ‘Вода в дисперсных системах’
Токи ТСД в оксидах алюминия


Использовались образцы гамма-оксида алюминия (^-АЬОз) с удельной поверхностью S = 77,6 м2/г, три образца гидроксида алюминия (ГОА-4, ГОА-2, ГОА-1) с 5 = 51,5; 20,1; 8,8 м*/г и кварц с S = 2,l м2/г. Измерения показали, что, в отличие от натриевых форм цеолитов, для дегидратированных ■у-АЬОз, гидроксида алюминия и кварца не наблюдаются максимумы при температурах 180—280 […]
Течение воды в тонких порах и пленках


Развитые представления об особой структуре граничных слоев и расклинивающем давлении составляют теоретическую основу не только равновесия, но и кинетики тонких водных прослоек и смачивающих пленок. Начнем рассмотрение процессов массопереноса с простейшего случая однокомпонентной жидкости в тонкой прослойке между незаряженными твердыми поверхностями. Здесь следует учитывать только один эффект, а именно — изменение структуры граничных слоев воды. […]
Течение незамерзающих прослоек


Для решения задачи переноса незамерзшей влаги под действием градиентов температуры и давления требуется рассмотрение взаимосвязанных потоков массы и энергии на основе термодинамики необратимых процессов [32, 318]. Для того чтобы продемонстрировать основной физический механизм явления, рассмотрим щелевую модель порового пространства (рис. 6.5). Здесь пластинка льДа заключена между параллельными твердыми стенками, вблизи которых сохраняются незамерзающие прослойки воды […]
Гидратация латексных частиц


Для оценки гидратации адсорбционных слоев на поверхности латексных частиц многие авторы применяли вискозиметри — ческий метод. Измеряя относительную вязкость, рассчитывали объемную долю полимерной дисперсной фазы ф в латексе по уравнению Ванда [520]: Т| = Г|о (1 + 2,5ф+7,349ф2), (11.2) Или уравнению Де-Бройна [521]: ■Ч ^ I — 2,5ф + 1,551 ф2 • (113) Частицы латексов […]
СОСТОЯНИЕ СВЯЗАННОЙ ВОДЫ В ДИСПЕРСНЫХ СИЛИКАТАХ


Ф. Д. Овчаренко, Ю. И. Тарасевин (Институт коллоидной химии и химии воды им. А. В. Думанского, Киев) В основе современных представлений о гидрофильное™ дисперсных систем лежит учение о связанной воде [1, 64]. Исследователи уже давно пытались разделить связанную воду на различные типы. Одна из первых попыток классифицировать воду по формам ее связи с дисперсными материалами […]
Течение незамерзающих пленок


Развитая теория термокристаллизационного переноса может быть применена также и к течению незамерзающих пленок воды [328, 329], покрывающих участок капилляра между ледяными менисками, находящимися при различной темпера- Рис. 6.8. Способ запаивания капилляров под давлением. Пояснения см. в тексте Туре Т0>Ті>Т<2, где То — температура плавления объемного льда I (рис. 6.7). Так как стационарное течение пленки при […]
Кинетика коагуляции латексов


Физико-химическая природа основных факторов агрегатив- ной устойчивости латексов может быть с наибольшей полнотой выявлена при исследовании кинетики их коагуляции от начала Таблица 11.4. Факторы интенсивности коагулирующего воздействия Способ коагуляции Фактор интенсивности Критерий устойчивости Бнблиогр. ссылка Добавление электролита Перемешивание в зазоре между коаксиальными цилиндрами Замораживание Czn Градиент скорости перемешивания G, С-‘ Температура замораживания Порог быстрой коагуляции […]
ВОДА ВБЛИЗИ БИОЛОГИЧЕСКИХ МОЛЕКУЛ


В. А. Букин, А. П. Сарвазян, Д. П. Харакоз (Институт биофизики АН СССР, Пущине) Вода — основной молекулярный компонент биологических систем. Водное окружение определяет структуру и функционирование биополимеров. Уменьшение количества воды в биологических системах ниже какого-то предела приводит к остановке биологических процессов. Поэтому взаимодействие биологических соединений с водой — гидратация — уже давно является предметом […]
ФИЗИЧЕСКОЕ МОДЕЛИРОВАНИЕ СВОЙСТВ ВОДЫ


Существенный прогресс в развитии теории жидкого состояния достигнут в последнее время благодаря применению компьютерной техники — методов численного моделирования Монте-Карло и молекулярной динамики. Вначале эти методы были применены для описания ‘свойств объемных жидкостей — термодинамических и физических — на основании потенциалов межмолекулярного взаимодействия. Это позволило, прежде всего, путем сравнения с известными свойствами реальных жидкостей уточнить […]