Обычные коллоидные системы в отличие от молекулярных растворов вследствие наличия поверхности раздела частиц с дисперсионной средой гетерогенны, большей частью термодинамически неравновесны и агрегативно неустойчивы. Именно поэтому проблема устойчивости коллоидных систем является центральной проблемой коллоидной химии, а коагуляция составляет наиболее важный механизм перехода к более устойчивому состоянию для всех типичных коллоидных систем.
Устойчивость и коагуляция коллоидных систем имеют огромное практическое значение в геологии, земледелии, биологии, технике. Неудивительно, что этому вопросу посвящено огромное число исследований.
Неустойчивость золей может проявляться также в укрупнении частиц за счет исчезновения или уменьшения размера более мелких. Процесс укрупнения частиц в золях аналогичен изотермической перегонке, при которой в замкнутом пространстве крупные капли или кристаллы растут за счет мелких вследствие большего давления насыщенного пара малых капель или кристалликов. Такая неустойчивость золей, выражающаяся в появлении крупных частиц, проявляется тем быстрее, чем больше растворимость дисперсной фазы. Регулируя растворимость дисперсной фазы путем изменения состава дисперсионной среды или температуры, можно влиять на скорость процесса в жидкой среде. Именно на этом основаны методы укрупнения мелких частиц, проходящих через фильтр, что особенно важно при проведении анализов в аналитической химии. Однако в связи с обычно очень малой растворимостью дисперсной фазы разрушение коллоидных систем в результате роста больших частиц за счет малых происходит, как правило, весьма медленно, и с этим видом потери устойчивости исследователю, работающему в области коллоидной химии, приходится иметь дело сравнительно редко.
Гораздо большее значение для коллоидных систем имеет коагуляция, ведущая к образованию агрегатов.
Коллоидные системы обладают весьма различной агрегативной устойчивостью. Некоторые системы живут лишь секунды после их образования, но есть много коллоидных систем, существующих весьма длительное время. Известно, например, что типичные гидрофобные золи иодида серебра и сульфида мышьяка, из которых удалены чужеродные электролиты, очень устойчивы и могут храниться годами. Объяснить длительное существование принципиально неустойчивых коллоидных систем только малой концентрацией золя и, следовательно, редкостью столкновения частиц, очевидно, нельзя, так как в хорошо очищенных золях концентрация дисперсной фазы может быть доведена до 10% и более.
Агрегативная устойчивость дисперсных систем в очень сильной степени зависит от состава дисперсионной среды и может быть резко изменена введением в нее даже очень малых количеств чужеродных электролитов. По влиянию добавок электролитов на устойчивость коллоидные системы можно разделить на два класса: лиофобные и лиофильные системы. В лиофобных системах при добавлении электролитов"резко увеличивается скорость коагуляции. После перехода через некоторый предел — критическую концентрацию — скорость коагуляции достигает предельного значения, характеризующего так называемую быструю коагуляцию. Лиофильные коллоидные системы коагулируют, если концентрация прибавляемого электролита весьма велика — порядка молей на литр.
Критические концентрации электролитов для лиофобных систем (в противоположность лиофильным) резко уменьшаются с ростом заряда противоионов — ионов, заряженных разноименно с зарядом коллоидных частиц.
Эти особенности агрегативной неустойчивости лиофобных систем, например золей металлов, заставили (Гарди, 1901 г.) предположить, что устойчивость лиофобных золей обусловлена электрическим зарядом их частиц, обнаруживающимся в явлениях электрофореза. После того как эта догадка подтвердилась, стало ясно, что механизм устойчивости и природа лиофобных дисперсных систем иные, чем лиофильных.
Наиболее основательно и успешно изучены, особенно в теоретическом отношении, лиофобные системы, на устойчивости и коагуляции которых мы в первую очередь и остановимся.
В свое время были сделаны попытки трактовать агрегативную устойчивость лиофобных коллоидных систем с позиций термодинамики. Ряд авторов (например, Марх), учитывая, с одной стороны, положительную свободную энергию поверхности раздела и, с другой стороны, понижение свободной энергии в результате образования на частицах двойного электрического слоя, а также энтропию системы пытались определить условия, при которых фактор, способствующий коагуляции, уравновешивается противодействующим фактором, и поэтому коллоидная система является агрегативно устойчивой. Однако все-эти попытки, за исключением специальных случаев (см. гл. VIII), кончились неудачей, так как эти авторы не учитывали, что при слипании частиц поверхность раздела частица — дисперсионная среда существенно не меняется (см. гл. I) и изменение энергии необходимо подсчитывать, исходя из действия сил притяжения между частицами. Эти силы вместе с силами отталкивания определяют агрегативное состояние системы.
В связи с этим агрегативная устойчивость системы обычно означает медленность процесса коагуляции, т. е. носит кинетический, а не термодинамический характер. Даже полное агрегативное равновесие, когда процессы агресации и распада агрегатов взаимно уравновешиваются, еще не означает термодинамического равновесия всей системы в целом.