Типичные пены представляют собой сравнительно весьма грубые высококонцентрированные дисперсии газа (обычно воздуха) в жидкости. Пузырьки газа в таких системах имеют размер порядка несколько миллиметров, а в отдельных случаях и сантиметров. Благодаря избытку газовой фазы и взаимному сдавливанию пузырьки пены имеют не сферическую форму, а представляют собой полиэдрические ячейки, стенки которых состоят из весьма тонких пленок жидкой дисперсионной среды. Пленки пены часто обнаруживают интерференцию; это свидетельствует о том, что их* толщина соизмерима с длиной световых волн.
В результате того, что пена состоит из таких полиэдрических ячеек, она имеет сотообразную структуру. Плато установил, что в соответствии с требованием минимума свободной поверхностной энергии на одном’жидком ребре ячейки всегда сходятся три пленки, образующие между собой равные углы в 120°, и что в одной точке могут сходиться лишь четыре ребра. Большой размер отдельных газовых пузырьков и тесное расположение их в пене исключают возможность броуновского движения. Кроме того, в результате особой структуры устойчивые пены обладают некоторой жесткостью или механической прочностью. Вообще, по строению обычные пены весьма напоминают высококонцентрированные эмульсии.
От типичных пен, представляющих высококонцентрированные дисперсии газа в жидкости, следует отличать низкоконцентрированные системы Г/Ж, в которых газовые пузырьки находятся на сравнительно большом расстоянии друг от друга. Примером такой дисперсной системы могут служить газированная вода, пиво или шипучее вино, содержащие пузырьки двуокиси углерода. Эти системы по свойствам ближе к разбавленным эмульсиям. Однако благодаря большой _разнице в плотностях жидкой и газовой фазы такие системы обладают очень малой седиментационной устойчивостью и существуют непродолжительное время.
Пены образуются при диспергировании газа в жидкости в присутствии стабилизаторов или, как их целесообразно называть в этом случае, пенообразователей. Жидкости без пенообразователей сколько-нибудь устойчивой пены не дают.
Прочность и продолжительность существования (время жизни) пены зависят от свойств пленочного каркаса, в свою очередь определяющихся природой и содержанием в системе пенообразователя, адсорбированного на межфазной поверхности. К типичным пенообразователям в случае водных пен принадлежат такие поверхностно-активные вещества, как спирты, жирные кислоты, мыла и мылоподобные вещества, белки, сапонин (экстрагируемый из растений глюкозид, обладающий поверхностно-активными свойствами). Существенно, что эти вещества обусловливают и устойчивость эмульсий углеводородов в воде.
Устойчивость пен зависит от природы и концентрации пенообразователя. Со временем пленки между пузырьками пены становятся тоньше вследствие стекания жидкости, пузырьки лопаются, пена разрушается и, наконец, вместо пены остается одна жидкая фаза — раствор пенообразователя в воде или другой жидкости.
Устойчивость пен можно характеризовать’Дременем существования пены, т. е. временем, прошедшим с момента образования пены до момента полного ее разрушения. Другой способ оценки устойчивости пены заключается в Пропускании с заданной скоростью через вспениваемую жидкость пузырьков воздуха и определения равновесной высоты образующегося при этом столба пены. Постоянная высота столба пены устанавливается в тот момент, когда скорость разрушения пены равна скорости пенообра — зования и, очевидно, может служить мерой устойчивости пены. Устойчивость пены удобно изучать также по времени жизни отдельного газового пузырька на поверхности жидкости, граничащей с воздухом. С этой целью пузырек воздуха выдавливают в жидкость с помощью капилляра с загнутым концом. Пузырек всплывает и, достигнув поверхности, задерживается там на некоторое время, прежде чем лопнет. Это время жизни пузырька обычно пропорционально времени существования столба пены в целом.
Существенно, что во время пребывания пузырька воздуха на поверхности жидкости пленка, покрывающая пузырек, становится все тоньше, о чем иногда можно судить по изменению интерференционных цветов пленки. Когда пленка достигает толщины меньше 0,01 мкм, интерференция становится уже почти незаметной, пленка темнеет, так как почти не отражает света, и затем через некоторое время разрушается. Однако в особых условиях, когда исключены испарение жидкой среды, сотрясения и другие внешние воздействия, пены могут существовать неограниченно долго. Например, Дьюару удалось обеспечить существование мыльного пузыря в течение трех лет.
По наблюдению Б. В. Дерягина и А. С. Титиевской мыльная пленка, достигшая наименьшей толщины, состоит из двух монослоев молекул пенообразователя, разделенных полимолекулярным слоем воды.
Сравнительно малое время существования пены и тот факт, что разрушению ее пузырька всегда предшествует стекание жидкости в пленке пены, приводит к выводу, что устойчивость пены в обычных условиях носит кинетический характер, а роль пенообразователя сводится в значительной степени к замедлению стекания жидкости.
Как видно из данных, приведенных в табл. XII, 1, водные растворы спиртов и жирных кислот образуют малоустойчивые пеиы с продолжительностью существования, ие нревышающей 20 е. Максимальная продолжительность существования пеиы приходится иа средине члеиы гомологических рядов. Низшие члены
обоих рядов, очевидно, слишком мало поверхностно-активны для того, чтобы образовывать устойчивые пены; высшие же члены ряда обладают недостатовнон для этого растворимостью.
Таблица XII, 1. Оптимальная концентрация водного раствора пенообразователя и максимальная продолжительность существования пены
Максимальная продолжительность существования пены, с |
Максимальная продолжительность существования пены, с |
Оптимальная концентрация, ммоль’л |
Оптимальная концентрация, ммоль/л |
Пенообра зователь |
Пенообразователь |
Спирты Этиловый Пропиловый Изо-Бутиловый Язо-амиловый Третичный амиловый Гептиловый Октиловый
280 |
5 |
340 |
11 |
90 |
12 |
36 |
17 |
34 |
10 |
0,7 |
8 |
0,3 |
5 |
Кислоты
Муравьиная
Уксусная
Пропионовая
Масляная
Валерьяновая
Капроновая
Гептиловая
Каприловая
Нониловая
Каждому спирту или кислоте отвечает оптимальная концентрация, при которой пенообразователь наиболее эффективен. Обычно наиболее устойчивые пены образуются при некоторой средней, но в общем небольшой концентрации спирта
Или кислоты. На рис. XII, 9 приведена изотерма, характеризующая зависимость продолжительности существования пены от концентрации изо-Амилового спирта.
Мыла дают гораздо более устойчивые пены, чем спирты и кислоты, очевидно благодаря наличию в их молекулах ионо — генной группы. Так же, как для спиртов и кислот, максимальная устойчивость пены отвечает мылам со средней длиной углеводородного радикала и их растворам средней концентрации.
Иначе ведут себя высокомолекулярные пенообразователи. Время существования пен в этом случае очень велико и может составлять в обычных условиях сотни и даже тысячи секунд. При этом время существования пен всегда тем больше, чем выше концентрация высокомолекулярного пенообразователя.
Рис. XII, 9. Зависимость времени жизни пены т от концентрации азо-амилового спирта с. |
Помимо природы и концентрации пенообразователя на устойчивость пены влияют температура, вязкость дисперсионной среды, введение в жидкую фазу электролитов и рН среды. К сожалению, точных данных о влиянии этих факторов на устойчивость пен очень мало. Повышение температуры обычно неблагоприятно сказывается на устойчивости пены. Действие повышения температуры
можно объяснить десорбцией пенообразователя с межфазной поверхности и понижением вязкости дисперсионной среды, что способствует более быстрому стеканию жидкости в пленке. Повышение температуры, очевидно, вызывает более быстрое разрушение пены и вследствие того, что ускоряется испарение дисперсионной среды и пленка обезвоживается. Введение в жидкую фазу не разрушающих пену электролитов уменьшает устойчивость пен, образованных низкомолекулярными пенообразователями. Повышение вязкости среды всегда п<гвышает устойчивость пен.
Весьма интересны исследования над «черными» пленками, начатые еще Перреном. Если наблюдать отдельную свободную пленку (или пузырек), образованную из достаточно концентрированного раствора мыла (например, олеата натрия), то легко заметить, что пленка постепенно становится все более тонкой, меняя цвета интерференции. После достижения толщины в 1000 А пленка становится белой. При дальнейшем утоньшении пленки количество отраженного света уменьшается, пленка становится серой, а отдельные ее участки приобретают неодинаковую толщину.
Существенно, что неодинаковое утоньшение пленки, образованной из концентрированных мыльных растворов, происходит ступенеобразно. В наиболее тонких участках пленка приобретает совершенно черный цвет.
Веллс провел ряд измерений толщины мыльных пленок с помощью интерферометрических и колориметрических методов и нашел, что толщина черной пленки в несколько раз меньше толщины наиболее тонкой части обычной пленки, что согласуется с опытами Перрена. Минимальная толщина черной пленки составляла 42—45 А, Чїо соответствует примерно удвоенной длине молекулы олеата натрия.
Шелудко и Эксерова (1961 г.) и Дюйвис (1962 г.) провели точные исследования толщины черной пленки, полученной из растворов поверхностно-активных веществ, и подтвердили результаты предыдущих исследований. Было найдено, что тончайшая пленка, полученная из раствора олеата натрия, имела толщину 40 А, в то время как толщина пленки, полученной из растворов смачивателей ОП-7 и ОП-20, составляла 85 и 100 А соответственно. Толщина этих пленок примерно в два раза больше длины молекулы поверхностно-активного вещества. Следует заметить, что такая малая толщина получается только при достаточной концентрации электролита в растворе. Если содержание электролита слишком мало, то образуются более толстые пленки, причем их равновесная толщина уменьшается постепенно с увеличением содержания электролита в полном соответствии с теорией ДЛФО.
Выше мы принимали, что при хранении пены отдельные ее пузырьки лопаются и в результате этого пена полностью разрушается. Однако, как показывает опыт, при хранении пены может происходить не только разрушение пузырьков, но и изменение их размеров. При этом размеры мелких пузырьков всегда уменьшаются, а крупных — увеличиваются. Причина этого явления заключается в том, что по законам капиллярности газ, находящийся в мелких пузырьках пены, испытывает большее давление, чем газ, заполняющий крупные пузырьки. Давление стремится вы — равняться путем диффузии газа через жидкую пленку, что приводит к уменьшению размеров мелких пузырьков и увеличению размеров больших пузырьков (Де Фриз, 1957 г.). Это явление напоминает изотермическую перегонку, когда более крупные капельки жидкости растут за счет более мелких вследствие того, что в последних жидкость обладает большим давлением пара. Подобное старение пены играет особенно большую роль, когда пленка пены весьма устойчива и разрушение пены обычным образом не происходит (например, для пен, полученных из каучукового латекса).
Старение пены сопровождается также и уменьшением общего ее объема. Причина этого вполне понятна, если учесть, что газовую фазу над пеной надо рассматривать как один бесконечно большой пузырек, в который путем диффузии газ будет переходить из отдельных пузырьков пены. Де Фриз установил, что в стареющей пене квадрат радиуса малых пузырьков линейно уменьшается со временем. Такой вывод полностью отвечает теории, развитой на основе указанных выше представлений.
Причины устойчивости пен. Устойчивость пен можно объяснять разными факторами, а именно действием так называемого эффекта Гиббса, наличием у пленки сравнительно высокой поверхностной вязкости или особых механических свойств (структурно-механический фактор устойчивости) и существованием в приповерхностном слое пленки гидратных или двойных электрических слоев, препятствующих ее утоньшению (термодинамический фактор устойчивости). Рассмотрим последовательно эти три фактора устойчивости пены.
Пленки пены при ее получении путем пропускания через жидкость пузырьков воздуха, а также при медленном уменьшении объема пены в результате сжатия отдельных ее пузырьков или их разрушения испытывают локальные деформации и поэтому должны хорошо переносить как сжатия, так и растяжения. Можно было бы считать, что легкой деформируемости пены и ее прочности должно способствовать малое поверхностное натяжение на границе пенообразующая жидкость—воздух. Однако это не так. Опыт показал, что для устойчивости пены имеет значение не столько малое поверхностное натяжение, сколько способность жидкой пленки легко и быстро изменять его значение. Чтобы выдержать локальные деформации без разрыва, пленка должна обладать способностью повышать поверхностное натяжение при локальных растяжениях и уменьшать его при локальных сжатиях. Этими изменениями компенсируются локальные деформации и разности в напряжениях, возникающих в разных участках пленки, и обеспечивается ее прочность. Гиббс называл эту способность эффективной упругостью пленки. Ее причина заключается в том, что если один участок пленки подвергается, например, растяжению, то его поверхность увеличится и вследствие этого концентрация поверхностно-активного вещества на межфазной границе уменьшится. Уменьшение поверхностной концентрации обусловит повышение поверхностного натяжения в растянутом участке, вследствие чего участок стремится сжаться в большей степени, чем все соседние нерастянутые участки. Обратное явление наблюдается при деформации, вызывающей сжатие пленки.
Совершенно очевидно, что «упругостью» в том смысле, в каком понимал ее Гиббс, могут обладать только пленки, полученные из растворов поверхностно-активных веществ. Пленки из индивидуальных жидкостей, обладающих постоянным поверхностным натяжением, не изменяющимся при их растяжении или сжатии, лишены подобной упругости, и поэтому получить из таких жидкостей устойчивые пены невозможно. Существенно также, что наиболее устойчивые пены обычно получаются из растворов поверхностно — активных веществ, обладающих не минимальным поверхностным натяжением, а способных наиболее резко изменять поверхностное натяжение с концентрацией.
При объяснении устойчивости реальной пены с точки зрения Гиббса следует иметь в виду особое строение этой системы. Именно благодаря своеобразной структуре пены эффект Гиббса вызывает значительные затруднения в стекании жидкости в пленках пены, что очень сильно сказывается на устойчивости всей системы. Каркас пены, как было показано, состоит из приблизительно плоских жидких пленок, являющихся стенками отдельных ячеек. Там, где сходятся три пленки, образуются ребра пузырька, в которых жидкость имеет сильно вогнутую поверхность. По законам капиллярности в этих местах жидкость имеет пониженное давление, что вызывает отсасывание ее из плоских частей каркаса пены в вогнутые. В результате этого в пленках пены возникает течение жидкости к ребрам. Это течение способствует самопроизвольному утоньшению пленок пены. Однако такое течение жидкости может происходить лишь внутри пленки, на поверхности оно невозможно из-за эффекта Гиббса. В самом деле, при течении жидкости от центральной части пленки к ребрам должно было бы увеличиться поверхностное натяжение в центральных частях пленки и в результате этого на поверхности ее тотчас возник бы противоток жидкости, направленный от ребер к центру, из-за чего течение прекратилось бы. Таким образом, стекание жидкости происходит так, как если бы поверхность пленки была неподвижной, т. е. жидкость как бы протекает по плоскому капилляру. Очевидно, стекание по такому капилляру происходит тем медленнее, чем тоньше пленка.
Рассмотренные выше представления не могут все же полностью объяснить устойчивость пены. Во-первых, с этой точки зрения трудно понять зависимость устойчивости пены от природы и концентрации пенообразователя. При наличии в жидкости достаточно
Активного пенообразователя режим стекания жидкости в пленках, казалось бы, не должен зависеть от этих обоих факторов. Однако опыт показывает, что это не так. Во-вторых, согласно этой точки зрения упругость пленки должна возрастать по мере ее утоньше — ния в результате отсасывания жидкости к ребрам пены. Это обусловлено тем, что запас поверхностно-активного вещества, содержащегося в тонких пленках, меньше, а следовательно, и уменьшение их поверхностной концентрации при растяжении будет больше. Однако, если с уменьшением толщины пленки упругость ее возрастает, то непоятно, почему же пленка рвется.
Рассмотренный фактор устойчивости является, по-видимому, определяющим для малоустойчивых пен, стабилизованных сравнительно низкомолекулярными пенообразователями.
Устойчивость высокоустойчивых пен объясняется существованием в пленках высоковязкого или механически прочного адсорбционного слоя — из молекул пенообразователя. Такое объяснение было предложено впервые еще в прошлом столетии Плато, а затем особенно широко было развито в работах П. А. Ребиндера и его школы. П. А. Ребиндер считает, что на поверхности растворов мыл или мылоподобных веществ образуются высоковязкие адсорбционные слои с гелеобразным строением, диффузно распространяю — „ щиеся в глубь раствора. Эти слои, с одной стороны, замедляют стекание жидкости в пленке, с другой — придают пленке пены высокую структурную вязкость и механическую прочность. Однако исследования А. А. Трапезникова, Лоуренса и других исследователей показали, что стойкие пены могут получаться и тогда, когда не обнаруживается заметная поверхностная вязкость или структурно-механические свойства на границе раствор — воздух.
К. В. Зотовой и А. А. Трапезниковым обнаружен интересный факт, позволяющий в некоторых случаях по-новому объяснить устойчивость пленок пены. Эти авторы установили, что поверхностно-активные коллоидные компоненты могут переходить в пленку в большем количестве, чем в адсорбционный слой на поверхности исходного раствора. Это обусловлено особыми условиями образования пленки, способствующими непрерывному обновлению поверхности и обмену поверхностно-активными компонентами. В результате перехода в пленку непрочных коллоидных агрегатов, возникших по тем или иным причинам в растворе, в глубине пленки между адсорбционными слоями может образоваться тиксотропная структура, сильно повышающая вязкость этой части пленки. Сами же адсорбционные слои остаются при этом маловязкими. Понятно, что благодаря такой структуре сильно замедляется процесс стекания и повышается устойчивость пен. С таким объяснением устойчивости пены хорошо согласуется исключительная длительность существования пен, стабилизованных высокомолекулярными соединениями. В этом случае образование высоковязкой тиксотропной структуры в глубине. пленки пены почти не вызывает сомнений.
Перейдем теперь к объяснению стабильности высокоустойчивых пен с помощью термодинамического фактора устойчивости.
Б. В. Дерягин, первый показавший значение этого фактора, объясняет возможность существования пен, исходя из разработанных им представлений о расклинивающем давлении. Причиной расклинивающего давления в пленках пены, стабилизованной ионо — генными веществами, является отталкивание двойных электрических слоев, образованных ионами пенообразователя в растворе около обеих поверхностей пленки. Наличие такого отталкивания доказано Б. В. Дерягиным и А. С. Титиевской при исследовании сжатия двухсторонних пленок, образованных в месте соприкосно1 вения двух пузырьков пены, с помощью очень тонкой методики и специально сконструированного прибора.
Эти исследования показали, что пленки, полученные из водных растворов олеата натрия, при утоньшении в результате наложения давления достигали некоторой постоянной толщины, которая дальше уже не изменялась. Равновесная толщина таких пленок составляла сотни ангстрем при малом содержании в пенообразую — щей жидкости электролитов. Наоборот, в достаточно концентрированных растворах электролитов равновесная толщина пленок была значительно меньше по сравнению с теоретически вычисленной. Последнее обстоятельство явилось прекрасным доказательством электростатической природы расклинивающего давления в этом случае. При сравнительно высоких концентрациях электролита (порядка 0,1 н. и более), когда диффузные ионные слои сжаты до предела, зависимость толщины пленки от концентрации не соблюдалась. Однако пленки при этом оставались устойчивыми. Это указывает на то, что при таких условиях в действие вступают уже силы отталкивания неэлектростатической природы, вероятно, связанные с гидратацией монослоев пенообразователя. Установленное Б. В. Дерягиным и А. С. Титиевской положение, что равновесные толщины адсорбированных пленок как ионогенных, так и неионогенных пенообразователей не зависят от высоких концентраций электролитов, а также от температуры, указывает на специфическую структуру этих слоев, придающих им свойства особой граничной фазы.
На значение гидратации для устойчивости пен указывал А. А. Трапезников, а еще раньше Д. А. Талмуд. С точки зрения А. А. Трапезникова стабильность пены обусловливается гидратацией полярных групп молекул пенообразователя, что тормозит стекание жидкости в пленке пены. Сцепление концов углеводородных цепей, расположенных на межфазной поверхности со стороны газовой фазы, нужно лишь для обеспечения связности (цельности) адсорбционного слоя. При этом адсорбционный слой должен быть достаточно легкоподвижным и, следовательно, разреженным для того, чтобы разрывы, образующиеся в результате стекания жидкости в пленке, успевали своевременно «залечиваться». Причиной разрушения пены А. А. Трапезников считает дегидратацию полярных групп адсорбционного слоя, наступающую вследствие непрерывного отсоса дисперсионной среды. В результате возникают сначала поверхностные, а затем и трехмерные агрегаты из молекул пенообразователя, не обладающие стабилизующим действием, и пленка в конце концов разрывается.
Таким образом, существует несколько факторов, объясняющих устойчивость пен. В настоящее время все больше исследователей приходит к выводу, что вообще не может быть единой теории устойчивости пен и что причины существования пен зависят от пенообразователей и условий получения пен.
Методы получения и разрушения пен.
Пены получают путем пропускания пузырьков соответствующего газа (обычно воздуха) через раствор пенообразователя или путем интенсивного механического перемешивания раствора пенообразователя. Пузырьки газа в жидкости окружаются адсорбционным слоем пенообразователя, всплывают к поверхности, подходят к имеющемуся на ней адсорбционному слою, растягивают его и таким образом образуют двухсторонние пленки. Если эти пленки достаточно прочны, возникшие пузырьки образуют пену.
О роли природы стабилизатора при пенообразовании было сказано в предыдущем разделе этой главы.
Очень часто технологу приходится разрушать образовавшуюся пену или принимать меры для предупреждения ее образования. С этой целью в систему обычно вводят такие вещества, которые, обладая высокой поверхностной активностью, не дают стойкой пены. Эти вещества вытесняют пенообразователь с поверхности жидкости и этим делают невозможным существование пены. В качестве подобных противопенных, или пеногасящих, веществ применяют различные вещества, например, спирты, сложные эфиры. Из спиртов для гашения пены чаще всего применяют циклогекса — нол, амиловый и октиловый спирты, а также смеси высших спиртов, получающихся как побочные продукты при синтезе метилового спирта. Другой метод пеногашения заключается в «пережигании» пленки пены путем воздействия на нее высоких температур. Для разрушения стойких пен могут быть использованы и различные механические воздействия.
Пенообразование и пены имеют большое практическое значение. Роль пены при флотации уже отмечалась в гл. VI, разд. 5. ‘Образование пены является положительным фактором при стирке. С помощью вспенивания и последующего удаления пены можно очищать некоторые жидкости от содержащихся в них поверхностно-активных примесей, переходящих при вспенивании в пену. И наоборот, пользуясь тем же приемом, из раствора можно извлекать содержащиеся в нем ценные поверхностно-активные вещества. Исключительно значение пен в противопожарном деле. Поскольку применяемые при тушении пожаров пены содержат в виде дисперсной фазы обычно двуокись углерода, такая пена при нанесении на горящие предметы препятствует доступу к ним воздуха и способствует затуханию огня.
В ряде случаев пеноо’разование может иметь отрицательное значение. Например, благодаря легкому образованию пены возникают трудности при перемешивании некоторых растворов. Образование обильной пены мешает выпариванию растворов в выпарных аппаратах и приводит к потерям ценной жидкости при перебросах пены. В этих случаях применяют средства, предупреждающие пенообразование, о которых уже было сказано выше.