Воздействие усилий сдвига

Па рис. 2.2 показано напряжение, приложенное к поверхностям, а не к концам об­разна. Целесообразно рассмотреть состояние образца, которое отличается от случая приложения растягивающего напряжения. Предположим, что известна площадь образца, к которой приложена нагрузка. Термин напряжение сдвига относится к по­каянному на рис. 2.2 приложенному по касательной усилию на единицу площади образца. Символ т означает напряжение сдвига и имеет ту же размерность, что и растяги ва ющее на п ря жен не.

Как показано на рис. 2.2, реакцией материала на приложение указанной нагрузки является деформация. Образец материала деформируется, превращаясь в параллеле­пипед. в котором угол между исходной и вновь образованной формами образца обо­значается буквой Т. Деформацию сдвига определяют как тангенс угла 4у и обознача­ют символом ф. Аналогично испытаниям при растяжении тангенс угла Ч’ является безразмерной величиной. При испытаниях материалов диаграммы «напряжение — деформация» при сдвиге имеют характер, аналогичный диаграммам «напряжение деформация» при растяжении. Обычно существует область, в которой напряжение сдвига линейно связано с деформацией сдвига, что подчиняется закону Гука. 15 этом случае соответствующее выражение может быть записано в следующем виде:

Т — бф, (2.6)

где G — модуль упругости материала при сдвиге.

Значение G также имеет размерность в паскалях (Па) или фунтах на кн. дюйм Как показано на рис. 2.4, материалы также могут оцениваться пределом текучести при сдвиге н иметь большинство нз тех свойств, которые характеризуются с помо­щью кривой «напряжение — деформация» при растяжении. Можно также показать, что модуль упругости при сдвиге и модуль Юнга с вязаны следующим выражением:

G = £/(2(1 + V», (2.7)

где (7— модуль упругости при сдвиге; Я — модуль Юнга; v коэффициент Пуас­сона.

Вы можете оставить комментарий, или ссылку на Ваш сайт.

Оставить комментарий