Под устойчивостью дисперсных систем понимают постоянство их свойств во времени и в первую очередь дисперсности, распределения по объему частиц дисперсной фазы и межчастичного взаимодействия. В данном определении имеется в виду устойчивость по отношению к укрупнению или агрегации частиц дисперсной фазы и к их осаждению. Все эти процессы характерны для свободнодисперсных систем, хотя укрупнение частиц в определенных условиях возможно и в связнодисперсных системах.
Проблема устойчивости дисперсных систем является одной из важнейших в коллоидной химии. Она имеет большое значение для протекания многих процессов — природных и осуществляемых в различных промышленных отраслях. Обеспечение устойчивости свободнодисперсных систем необходимо при получении из них различных изделий, покрытий, связующих материалов, лекарственных препаратов, аэрозольных средств и т. д. Ликвидация устойчивости требуется для того, чтобы вызвать, структурообразование в материалах, для получения осадков при разделении фаз, очистке промышленных выбросов и др.
По предложению Н. П. Пескова (1920 г.) устойчивость дисперсных систем подразделяют на два вида: устойчивость к осаждению дисперсной фазы и устойчивость к агрегации ее частиц. Первый вид устойчивости, который характеризует способность, дисперсной системы сохранять равномерное распределение частиц дисперсной фазы по объему дисперсионной среды, или ее устойчивость к разделению фаз (седиментационная устойчивость), рассмотрен в разд. IV.A, посвященном кинетическим свойствам дисперсных систем. В данном разделе обсуждаются явления и процессы, обусловленные агрегативной устойчивостью дисперс — ных систем.
Прежде всего отметим, что все дисперсные системы в зависимости от механизма процесса их образования по классификации П. А. Ребиндера подразделяют на лиофильные, которые получаются при самопроизвольном диспергировании одной из фаз (самопроизвольное образование гетерогенной свободнодисперс — ной системы), и Лиофобные, получающиеся в результате диспергирования и конденсации с "пересыщением (принудительное образование гетерогенной свободнодисперсной системы).
Лиофобные системы по определению должны обладать избытком поверхностной энергии, если последняя не скомпенсиро — вана введением стабйлизаторов. Поэтому в них самопроизвольно идут процессы укрупнения частиц, т. е. происходит снижение поверхностной энергии за счет уменьшения удельной поверхности. Такие системы называют агрегативно неустойчивыми.
Укрупнение частиц может идти двумя путями. Один из них, называемый изотермической перегонкой, заключается в переносе вещества от мелких частиц к крупным, так как химический потенциал последних меньше (эффект Кельвина). В результате мелкие частицы постепенно растворяются (испаряются), а крупные— растут. Второй путь, наиболее характерный и общий для дисперсных систем, представляет собой коагуляцию (от лат, свертывание, затвердение), заключающуюся в слипании и слиянии частиц. В общем смысле под коагуляцией понимают потерю агрегативной устойчивости дисперсной системой.
Коагуляция в разбавленных системах приводит к потере седиментационной устойчивости и в конечном итоге к расслоению (разделению) фаз. К процессу коагуляции относят адгезионное взаимодействие частиц дисперсной фазы с макроповерхностями (адагуляция). В более узком смысле коагуляцией называют слипание частиц, процесс слияния частиц получал название коалесценции. В концентрированных системах коагуляция может проявляться в образовании объемной структуры, в которой равномерно распределена дисперсионная среда. В соответствии с двумя разными результатами коагуляции различаются и методы наблюдения и фиксирования этого процесса. У к р у пне ние часТиц ведет, например, к увеличению мутности раствора, уменьшению осмотического давления. Структурбобра — зование изменяет реологические свойства""системЫ, например, возрастает Вязкость, замедляется ее течение.
Чтобы нагляднее представить основные процессы, которые могут происходить в дисперсных системах, на рис. VI. 1 показана схема переходов дисперсных систем в разные состояния. Устойчивая свободнодисперсная система, в которой дисперсная фаза равномерно распределена по всему объему, может образоваться в результате конденсации из истинного раствора. Потеря агрегативной устойчивости приводит к коагуляции, первый этап которой состоит в сближении частиц дисперсной фазы и взаимной их фиксации на небольших расстояниях друг от друга. Между частицами остаются прослойки среды. В результате образуются или флокулы (флокуляция — образование агрегатов из
Нескольких частиц, разделенных прослойками среды), или коа — гуляциоиные структуры, отличающиеся подвижностью частиц относительно друг друга под действием сравнительно небольших нагрузок (места контактов разделены прослойками среды). Обратный процесс образования устойчивой свободнодисперсной системы из осадка или геля (структурированной дисперсной системы) называется пептизацией.
Более глубокий процесс коагуляции приводит к разрушению прослоек среды и непосредственному контакту частиц. В итоге или образуются жесткие агрегаты из твердых частиц, или происходит полное слияние их в системах с жидкой или газообразной дисперсной фазой (коалесценция). В концентрированных системах образуются жесткие объемные конденсационные структуры твердых тел, которые снова можно превратить в свободнодис — персную систему только с помощью диспергирования (принудительного). Таким образом, понятие коагуляции включает в себя несколько процессов, идущих с уменьшением удельной поверхности системы.
Агрегативная устойчивость нестабилизированных лиофобных дисперсных систем носит кинетический характер, и судить о ней можно по скорости процессов, вызываемых избытком поверхностной энергии. При изотермической перегонке агрегативная устойчивость определяется скоростью массопереноса от мелких частиц к крупным. Скорость коагуляции определяет агрегатив-
Ную устойчивость дисперсной системы, для которой характерен процесс слипания (слияния) частиц.
Агрегативная устойчивость может носить и термодинамический характер, если дисперсная система не обладает избытком поверхностной энергии. В такой дисперсной системе поверхностная энергия скомпенсирована энтропийной составляющей, благодаря чему система проявляет термодинамическую агрега — тивную устойчивость и в ней не происходит процесс коагуляции.
Различают термодинамически агрегативно устойчивые системы и системы термодинамически устойчивые к коагуляции. Лиофильные системы термодинамически агрегативно устойчивы, они образуются самопроизвольно и для них процесс коагуляции вообще не характерен. В то же время лиофобные стабилизированные системы термодинамически устойчивы к коагуляции; они могут быть выведены из такого состояния с помощью воздействий, приводящих к избытку поверхностной энергии (нарушение стабилизации). Очевидно, что термодинамически устойчивые к коагуляции системы являются термодинамически неустойчивыми к изотермической перегонке.
В соответствии с вышеизложенной классификацией различают термодинамические и кинетические факторы агрегативной устойчивости дисперсных систем. Так как движущей сИлой коАГуляциИ..является избыточная поверхностная энергия, то основными факторами, обеспёчивающйми устойчивость дисперсных систем (при сохранении размера поверхности), будут те, которые снижают поверхностное натяжение. Эти факторы относят к термодинамическим. Они уменьшают вероятность эффективных соударений между частицами, создают потенциальные барьеры, замедляющие или даже исключающие процесс коагуляции. Чем меньше поверхностное натяжение, тем ближе система к термодинамически устойчивой. Однако это совсем не значит, что в агрегативно неустойчивой системе с уменьшением поверхностного натяжения обязательно снижается скорость коагуляции, так как последняя зависит, кроме того, и от кинетических факторов.
Кинетические факторы, снижающие скорость коагуляции, связаны в основном с гидродинамическими свойствами среды: с замедлением сближения частиц, вытекания и разрушения прослоек среды между ними.
Различают следующие термодинамические и кинетические Факторы устойчивости дисперсных систем.
1. Электростатический фактор заключается в уменьшении межфазного натяжения вследствие возникновения двойного электрического слоя на поверхности частиц в соответствии с уравнением Липпмана. Появление электрического потенциала на межфазной поверхности обусловливается поверхностной электролитической диссоциацией или адсорбцией электролитов. Основы электростатической теории устойчивости лиофобных систем излагаются в разд. VI. Б.
2. Адсорбционно-сольватный фактор состоит в уменьшении межфазного натяжения при взаимодействии частиц дисперсной фазы со средой (благодаря адсорбции и сольватации) в соответствии с уравнением Дюпре для работы адгезии и адсорбционным уравнением Гиббса.
3. Энтропийный фактор, как и первые два относится к термодинамическим. Он дополняет первые два фактора и действует в системах, в которых частицы или их поверхностные слои участвуют в тепловом движении. Сущность его состоит в стремлении дисперсной фазы к равномерному распределению по объему системы (как и распределение растворенного вещества в истинных растворах).
4. Структурно-механический фактор является кинетическим. Его действие обусловлено тем, что на поверхности частиц имеются пленки, обладающие упругостью и механической прочностью, разрушение которых требует затраты энергии и времени. В этом смысле сюда можно отнести и первые два фактора, способствующие образованию упругих поверхностных слоев.
5. Гидродинамический фактор снижает скорость коагуляции благодаря изменению вязкости среды и плотности дисперсной фазы и дисперсионной среды.
6. Смешанные факторы наиболее характерны для реальных систем. Обычно агрегативная устойчивость обеспечивается несколькими факторами одновременно. Особенно высокая устойчивость наблюдается при совокупности действия термодинамических и кинетических факторов, когда наряду со снижением межфазного натяжения проявляются структурно-механические свойства межчастичных прослоек.
Необходимо иметь в виду, что каждому фактору устойчивости соответствует специфический метод его нейтрализации. Например, действие электростатического фактора значительно снижается при введении в систему электролитов, которые вызывают сжатие двойного электрического слоя. Сольватация при адсорб — ционно-сольватном факторе может быть исключена лиофобиза — цией частиц дисперсной фазы с помощью адсорбции соответствующих веществ. Действие структурно-механического фактора можно уменьшить с помощью веществ, разжижающих и растворяющих упругие структурированные слои на поверхности частиц.