Мы уже говорили о том, что агрегативная неустойчивость —> специфическая особенность коллоидных систем. Это свойство коллоидных систем имеет большое практическое значение. Не будет преувеличением сказать, что основной задачей технолога производственного процесса, в котором имеют место коллоидные системы, является либо поддержание агрегативной устойчивости системы, либо, наоборот, обеспечение известных условий коагуляции.
Агрегативная неустойчивость является центральной проблемой коллоидной химии, и уже в начале курса следует хотя бы в самом общем виде рассмотреть, какие причины обусловливают агрега — тивную неустойчивость коллоидных систем и почему многие коллоидные системы, несмотря на их принципиальную агрегативную неустойчивость, существуют весьма продолжительное время. Причины неустойчивости коллоидных систем могут быть объяснены с двух точек зрения — термодинамической и кинетической.
1 1 | | Молекулярно-дисперсные |
|
I системы |
|
У 1 Д L^ Коллоидные |
|
У-| системы І |
|
11 Микрогетерогенные |
|
ГЧ/ системы |
|
І Грубодисперсные |
|
1 ^-*^системы І — |
Ю т5 см Рис. 1,2. Зависимость удельной поверхности системы от размера частиц. |
Согласно термодинамике, агрегативная неустойчивость коллоидных систем обусловлена достаточно большой и всегда положительной свободной поверхностной энергией, сосредоточенной на
межфазной поверхности системы. Поскольку поверхностная энергия представляет свободную энергию и так как все системы, обладающие избыточной свободной энергией, неустойчивы, это обусловливает способность коллоидных систем коагулировать. При коагуляции частицы слипаются, при этом межфазная поверхность хотя бы частично исчезает и, таким образом, уменьшается свободная энергия системы. Впрочем, Смолуховский, а в последнее время Г. А. Мартынов обратили внимание на то, что для уменьшения свободной энергии системы непосредственный контакт частиц не обязателен. Свободная энергия может уменьшаться и тогда, когда частицы не входят в непосредственное соприкосновение, а сближаются лишь на некоторое расстояние, позволяющее им взаимодействовать через слой, разделяющий их среды.
В самом деле, пусть
F — ‘utf (1.5)
Где F — свободная поверхностная энергия всей системы; 2 — межфазная поверхность; f— удельная свободная поверхностная энергия.
Величина F представляет собой сумму межфазной поверхностной энергии Fa, Определяемой состоянием монослоя на границе фаз, и свободной энергии Fv Вблизи поверхности, т. е. F = Fa+ Fv— Объемно-поверхностный вклад Fv обусловлен изменением состояния слоев жидкости вблизи поверхности раздела фаз. Несмотря на то что вообще Fa 3> Fv, устойчивость системы ‘в большинстве случаев связана именно с изменением так как при образовании агрегатов из твердых частиц граница раздела фаз обычно не исчезает. Поэтому в ходе коагуляции величина Fa остается практически постоянной, а изменяется /„, причем степень изменения зависит от уменьшения расстояния между частицами. Конечно, все это не относится к эмульсиям, где имеет место коалесцеиция, то есть слияние частиц с полной ликвидацией первоначально разделяющей частицы межфазной поверхности.
Поскольку коллоидные системы, обладающие большой удельной поверхностью и большой свободной энергией, являются принципиально неравновесными системами, к ним неприложимо известное правило фаз. Такие системы, очевидно, всегда будут стремиться к равновесному состоянию, отвечающему разделению системы на две сплошные фазы с минимальной межфазной поверхностью, хотя это равновесие практически может никогда и не наступить. Термодинамическое толкование причин устойчивости или неустойчивости коллоидных систем чрезвычайно просто. Однако, как и всякая термодинамическая трактовка, это объяснение формально, т. е. она не раскрывает сущности свойства агрега — тивной неустойчивости. Кроме того, термодинамика не устанавливает связи между свободной энергией системы и тем, как долго система может пребывать в неравновесном состоянии. Поэтому более полным в данном случае является объяснение агрегативной неустойчивости или устойчивости коллоидных систем с позиций физической кинетики.
Согласно кинетическим представлениям неустойчивость или устойчивость коллоидной или микрогетерогенной системы определяется соотношением сил, действующих между отдельными ее частицами. К таким силам относятся силы двух родов: силы сцепления, или аттракционные силы, стремящиеся сблизить частицы и образовать из них агрегат, и силы отталкивания, препятствующие коагуляции.
Силы сцепления имеют обычно ту же природу, что и межмолекулярные (ван-дер-ваальсовы) силы. Существенно, что силы, действующие между частицами, очень быстро возрастают при сближении частиц.
Силами отталкивания могут являться электрические силы, возникающие в результате избирательной адсорбции межфазной поверхностью одного из ионов электролита, присутствующего в системе. Поскольку частицы дисперсной фазы по своей природе одинаковы и адсорбируют всегда определенный ион, все они приобретают электрический заряд одного и того же знака и испытывают взаимное отталкивание, что препятствует сближению их на такие расстояния, где уже могут действовать весьма значительные аттракционные силы. Другой причиной, препятствующей сближению коллоидных частиц до расстояний, на которых начинают превалировать силы сцепления, может явиться образование на поверхности частиц сольватной оболочки из молекул среды. Такая оболочка возникает в результате адсорбции дисперсной фазой либо молекул среды, либо молекул или ионов третьего компонента (стабилизатора) системы. Помимо этих двух факторов существуют и другие факторы, обеспечивающие агрегатнв — ную устойчивость коллоидным системам. Подробно все факторы устойчивости рассмотрены в гл. IX.
Таким образом, относительная устойчивость коллоидной системы определяется тем, достаточно ли велики силы отталкивания, чтобы воспрепятствовать сближению частиц на близкие расстояния. Понятно, что такое объяснение не противоречит принципиальной неустойчивости огромного большинства коллоидных систем, поскольку при непосредственной близости поверхностей частиц силы сцепления, как правило, больше сил отталкивания и двум отдельным частицам энергетически обычно выгодней образовать агрегат. В дальнейшем мы увидим, что имеется много способов уменьшения сил отталкивания, и в частности, одним из таких способов является введение в систему электролитов.