САМОТВЕРДЕЮЩИЕ КОМПОЗИЦИИ НА ОСНОВЕ ЖИДКОГО СТЕКЛА

Свойства жидкого стекла

Свойства водных растворов силикатов щелочных металлов и их способность вступать в физико-химическое взаимодействие с раз­личными веществами в большой мере определяются свойствами безводных силикатов — силикатных стекол. Безводные силикаты щелочных металлов изучены значительно лучше, чем их водные растворы. Существует несколько гипотез о строении силикатных стекол.

Все гипотезы допускают наличие в стекле высокополимерного, апериодического, но не лишенного отдельных упорядоченных ми­крообластей каркаса, приближающих стекло к кристаллической структуре.

Различные точки зрения по вопросу внутреннего строения крем­неземистого стекла могут быть сведены к двум важнейшим: к тео­рии пространственной сетки Захариазена и цепочечной гипотезе Сосмэна — Тарасова. По мнению большинства исследователей, расхождения между этими представлениями носят больше каче­ственный, чем количественный характер. Строение стекол лучше описывается той или иной теорией в зависимости от их состава и сложности.

Согласно современным представлениям стекла щелочных сили­катов являются частным случаем рассмотренных систем. Они со­стоят из кремнекислородных комплексов, несущих отрицательный заряд, степень сложности и разветвленности которых может быть различной, и катионов металлов (Na+, К+ и т. д.). Для этих стекол характерно наличие связи двух типов: ионно-ковалентной (связь Si—О) и ионной (Me—О). Как показало изучение строения ряда силикатов [74], при большом содержании щелочных окислов сили­каты состоят из щелочных или слоистых радикалов — Si—О—Si, сшитых катионами щелочного окисла. В этом случае свойства сте­кол будут определяться ионной связью. При малом содержании щелочных окислов образуются каркасные (непрерывные) струк­туры, а свойства стекол будут определяться ионно-ковалентной связью.

Детальным изучением диаграммы состояния бинарной системы Na20—Si02 установлено существование трех определенных сили­катов натрия: 2Na20-Si02, Na20-Si02 и Na20-2Si02. По данным П. Н. Григорьева и М. А. Матвеева, к числу индивидуальных кристаллических силикатов натрия, обнаруживаемых современ­ными методами, относится также трисиликат натрия Na20-3Si02. Растворимость силикатов натрия в воде ухудшается по мере увели­чения их модуля.

По представлениям С. К. Дуброво и О. А. Шмидт, процесс взаи­модействия силикатов натрия с водой и их растворение протекают в две стадии. На первой стадии происходит обмен ионов натрия стекла на ионы водорода раствора, вследствие чего на поверхности образуется слой кремневой кислоты, составляющей вместе с крем­неземом исходного стекла защитный слой на его поверхности. На второй стадии происходит взаимодействие защитного слоя с обра­зовавшимся щелочным раствором, вызывающее растворение крем­невой кислоты на поверхности.

Было установлено, что при взаимодействии силикатов натрия с водой вся переходящая в раствор кремневая кислота находится в молекулярной степени дисперсности. При этом, по мнению М. А. Матвеева, стеклообразные щелочные силикаты переходят в раствор, не гидролизуясь, и диссоциируют в растворе на ком­плексные гидратированные ионы щелочного металла и кремнекис — лородные анионы.

Система Na20—Si02—Н20 была изучена в интервале темпе­ратур 10—450° С. При постепенном выпаривании водных растворов метасиликата натрия, по данным Р. Айлера [1] и Ю. Вейла, могут быть выкристаллизованы гидратированные метасиликаты различных типов, например Na2Si03-5H20; Na2Si03-6H20; Na2Si03-8H20 и Na2Si0s-9H20, с температурами плавления соот­ветственно 72,2; 62,85; 48,35 и 47,85° С. Они очень хорошо раство­римы в воде и имеют кристаллический характер.

Растворы силикатов натрия в воде изучали многие исследова­тели, однако их строение до настоящего времени выяснено недо­статочно. Чаще всего жидкие стекла рассматривают как лиофиль — иые коллоидные системы. Так как взгляды на строение лиофиль — ных коллоидных систем в последнее время сильно изменились, то и представления о строении жидких стекол в известной мере устарели. Еще несколько десятилетий назад лиофильные коллоиды считались гетерогенными неравновесными системами, а теперь всеми признаются за истинные равновесные растворы полиме­ров [16J.

Последние представления о полимерном строении неорганиче­ских стекол вообще и щелочно-силикатных стекол, в частности, дают основание рассматривать жидкие стекла как растворы неорганических полимеров. Свойства их определяются подвиж­ностью и гидратацией катионов щелочного металла и разветвлен — ностью полимерных кремнекислородных анионов. От настоящих полимеров органического происхождения стекла отличаются тем, что их полимерная часть (каркас) имеет характер высокополимер­ного анионного радикала. М. А. Матвеев и А. И. Рабухин отме­чают, что особенностью силикатных и других стекол является то, что у них анион полимеризован, а катион мономерен. Э. Тило указывает, что для неорганических полимеров специфичным является наличие не полимерных молекул, а полимерных ионов. А. И. Рабухин, изучавший физико-химические свойства жидких стекол, указывает на двойственность их природы. По зависимости плотности жидких стекол от их состава, по сжимаемости, показа­телям преломления и отчасти эквивалентной электропроводности они ведут себя как водные растворы электролитов, а по свойствам вязкости, резко возрастающей с концентрацией, — как растворы полимеров.

Степень диссоциации силикатов в водных растворах невелика. Причина этого состоит в том, что свободный заряд полимерных анионов может возрасти настолько, что оставшиеся катионы чисто электростатически препятствуют диссоциации.

Жидкое стекло обладает высокой реакционной способностью. Как отмечается в специальной литературе, веществ, не реагиру­ющих с жидким стеклом, известно меньше, чем веществ, вступа­ющих с ним во взаимодействие.

Взаимодействие жидкого стекла с кислотами

Так как силикаты натрия являются солями очень слабой крем­невой кислоты, последняя должна вытесняться из этих солей всеми растворимыми в воде неорганическими и органическими кислотами. При этом образуется гель кремневой кислоты, обла­дающий вяжущими свойствами. Приводим схему одной из таких реакций (по данным П. Н. Григорьева и М. А. Матвеева):

Na2Si03 + 2НС1 = 2NaCl + H2Si03.

По нашим данным, большинство кислот очень энергично взаимодействует с жидким стеклом, образуя хлопьевидные осадки — кремиегель. Твердение с индукционным периодом про­исходит только при большом разбавлении стекла (до плотности 1,1) и низкой концентрации кислот (10—20%), однако образу­ющийся при этом гель малопрочен.

Ряд соединений (А1С13, Fe2(S04)3, A12(S04)3, Na2C03 и др.) подвергается гидролизу с образованием соответствующей кислоты, вступающей затем во взаимодействие с жидким стеклом (случай двухступенчатой реакции), но все они по тем или иным причинам не могут быть использованы для отверждения жидкого стекла.

Взаимодействие с кремнефтористоводородной кислотой. Крем- нефтористоводородная кислота является сильной двухосновной кислотой и относится к числу комплексных соединений. В водном растворе подвергается диссоциации и гидролизу в несколько по­следовательных стадий. В больших количествах H2SiF6 получают в технике поглощением водой SiF4, являющегося побочным про­дуктом производства суперфосфата и фосфорной кислоты. Это очень дешевый материал, сырьевые ресурсы которого неогра­ниченны.

Условно состав раствора H2SiF6, по данным И. Г. Рысс, можно представить как смесь HF, SiF4 и Н20.

В водном растворе HF диссоциирует:

2HF^2H’+2F’.

Положение равновесия этой реакции смещается вправо вследствие связывания ионов фтора в относительно прочный комплексный ион SiFe:

2F’ + SiF4 раств <— SiFe-

Фтористый кремний подвергается гидролизу:

SiF4 + 2Н20 ^ SiO, гидр + 4HF.

Свойства водного раствора будут определяться условиями равновесия этих основных реакций. В щелочном растворе часть кислоты нейтрализуется мгновенно, а затем наступает проте­кающий во времени процесс разложения SiF|; по уравнению

SiF6^SiF4 +2F’.

При взаимодействии кремнефтористоводородной кислоты с жидким стеклом скорость реакции, по-видимому, определяется разложением SiFej и последующим гидролизом SiF4, в процессе которого образуются кремнегель и плавиковая кислота HF, реагирующая затем с силикатом натрия.

Условно в общем виде реакцию химического взаимодействия между H2SiF6 и жидким стеклом различного модуля можно за­писать следующим образом:

Для одномодульного стекла

H.,SiFc -1- 3NaSiOs + 7Н30 — 6NaF + 4Si (ОН)4; (7)

Для двухмодульного стекла H2SiF„ + 3Na2Si20B + 13НгО — 6NaF + 7Si (ОН)4. (8)

Образующаяся в процессе реакции ортокремиевая кислота выделяется в виде геля, вызывая затвердевание смеси. Кремний, входящий в состав H2SiF6, участвует в образовании дополни­тельных молекул ортокремневой кислоты, повышающих связу­ющую способность системы. В качестве отвердителя применяли кремнефтористоводородную кислоту 8%-ной концентрации. В та­ком виде она чаще всего поставляется потребителям. Эксперимен­тальные данные по продолжительности гелеобразования компози­ций жидкое стекло — H2SiFe при разной плотности жидкого стекла и переменном количестве кислоты приведены на рис. 28.

Весьма важной и интересной особенностью кремнефтористо — водородной кислоты является ее способность вызывать геле- образование в концентрированных растворах жидкого стекла с регулируемым индукционным периодом, причем до наступления момента коагуляции физические свойства раствора, в частности его вязкость, остаются практически неизменными. С повышением плотности жидкого стекла продолжительность гелеобразования возрастает. Прочность образующегося геля высока, но она умень­шается с понижением плотности жидкого стекла и повышением содержания кислоты.

Составы и свойства ЖСС с кремнефтористоводородной кисло­той приведены в гл. 5.

Мин 50

,1 | |

I

(5S м

30

САМОТВЕРДЕЮЩИЕ КОМПОЗИЦИИ НА ОСНОВЕ ЖИДКОГО СТЕКЛА

^ОБг/см3

Го W 60 80 100 120 см3 Коли."сспЗп HzSlFe

Рис. 28.

П родолжительность гелеобразования композиций, состоящих из 100 см3 жидкого стекла различной плотности и переменного количества H2SiF„ (8%-иая концентрация)


Соли кремнефтористоводородной кислоты — фторосиликаты также отверждают жидкое стекло, взаимодействуя с ним по тем же схемам (7), (8). Примером этой группы соединения является кремнефтористый натрий Na2SiFe. Он находит применение в строи­тельной промышленности для получения самотвердеющих кислото­упорных цементов на основе жидкого стекла [61 ] и может исполь­зоваться для приготовления самотвердеющих формовочных смесей на жидком стекле.

Взаимодействие жидкого стекла с гидроокисями щелочноземельных металлов и силикатами кальция

По данным П. Н. Григорьева и М. А. Матвеева, жидкое стекло легко и быстро реагирует с гидроокисями щелочноземельных металлов с образованием гелеобразных продуктов реакции.

Реакция, например, гидроокиси бария с жидким стеклом про­текает по следующей схеме:

NaX> • nSi02 — f Ва(ОН)2 + 6Н20 =

= 2NaOH + (я — 1) Si02 + BaSi03 -6H20.

Эти же авторы отмечают, что аналогично идет реакция жидкого стекла с гидроокисями других щелочноземельных металлов:

Са(ОН)2, Mg(OH)3I Sr(OH)2.

Здесь также необходимо рассмотреть возможность двухста — дийного протекания реакции между жидким стеклом и веществами, образующими в водной среде гидроокиси щелочноземельных ме­таллов.

Из строительной практики известна способность трехкаль — циевого и двухкальциевого силикатов, являющихся минералоги­ческими составляющими портландцемента, подвергаться гидро­лизу при достаточном количестве воды с образованием Са(ОН)2 и различных гидросиликатов кальция в процессе твердения це­мента.

Приводим схему реакций гидролиза трехкальциевого и двух­кальциевого силиката по данным работы [61 ] и В. Ф. Журавлева:

2 (ЗСаО • Si02) + 6Н20 = ЗСаО • 2Si02- ЗН20 + ЗСа(ОН)2;

2СаО • Si02 + яН20 = Са(ОН)2 + СаО • Si02 (п — 2) Н20. (9)

Обе реакции гидролиза протекают медленно, особенно вторая.

Большое количество двухкальциевого силиката (более 50%) содержится в саморассыпающихся шлаках феррохромового про­изводства, а также в отходах, получающихся при производстве глинозема из нефелиновых руд, так называемых нефелиновых шламах. В связи с этим нами были изучены чистые синтезиро­ванные ЗСаО Si02 и |3-2СаО SiOa, портландцемент, содержащий эти соединения в больших количествах, а также феррохромовый шлак и нефелиновый шлам, в состав которых входит двухкаль — циевый силикат. Материалы размалывали до примерно равной удельной поверхности (удельная поверхность C3S была равна 3200 см2/г, удельная поверхность |3-C2S — 3400 см2/г). Дисперс­ность феррохромового шлака и нефелинового шлама была близкой к дисперсности остальных материалов: удельная поверхность шлака (домолотого) составляла 3100 см2/г; а нефелинового шлама — 3000 см2/г. Диаграммы твердения композиций, состоящих из жидкого стекла (М = 2,9 и М = 2,4, р = 1,48 г/см3) и порошко­образных отвердителей, взятых в соотношении 1 : 1 (по массе) представлены на рис. 29.

При модуле 2,9 композиции с трехкальциевым силикатом (C3S) твердеют мгновенно в процессе их приготовления. Поэтому кривая твердения для C3S на рис. 29, а не приведена. Двухкаль — циевый силикат ^-модификации, нефелиновый шлам и феррохро — мовый шлак твердеют с жидким стеклом при наличии хорошо вы­раженного индукционного периода. Затвердевшие композиции имели однородный вид и достаточно высокую прочность. При за­мешивании портландцемента с жидким стеклом модуля 2,9 сразу же наблюдается частичное схватывание массы с образованием ко­мочков. Индукционный период твердения отсутствует. Дальней­шее затвердевание композиции протекает очень медленно. Такой характер твердения объясняется, по-видимому, разнородностью состава портландцемента: одни минералогические составляющие (такие, как трехкальциевый силикат, алюминаты кальция) реаги­руют с жидким стеклом очень быстро, другие — медленно.

Снижение модуля жидкого стекла с 2,9 до 2,4 привело к за­медлению скорости взаимодействия компонентов и существенно изменило характер твердения композиций (рис. 29, б). В этом случае не только C2S, но и C3S, и портландцемент твердеют при

САМОТВЕРДЕЮЩИЕ КОМПОЗИЦИИ НА ОСНОВЕ ЖИДКОГО СТЕКЛА

Рис. 29. Кинетика твердения композиций жидкое стекло—силикаты кальция:

А — М = 2,9; б — М = 2,4; / — р— C, S; 2 — нефелиновый шлам; 3 — феррохромо — вый шлак; 4 — портландцемент; 5 — C3S

Заметном индукционном периоде, а интервал времени между нача­лом и окончанием твердения сравнительно небольшой.

Судя по приведенным данным, чистый двухкальциевый сили­кат, а также феррохромовый шлак и нефелиновый шлам дают наиболее благоприятный характер твердения композиций и удо­влетворяют основным требованиям, которые предъявляются к от — вердителям. Твердение формовочной массы происходит практи­чески одновременно по всему объему. Те же данные свидетель­ствуют о возможности применения в качестве отвердителей также трехкальциевого силиката и портландцемента в сочетании с низ­комодульным стеклом.

Двухкальциевый силикат в самостоятельном виде в природе не встречается. Поэтому, с точки зрения практического использо­вания, особый интерес представляют дешевые и доступные ма­
териалы, содержащие C2S в больших количествах: феррохромовый шлак, нефелиновый шлам, электропечные, мартеновские и до­менные шлаки; шлаки, получающиеся при производстве ферро­марганца и ферровадания, и др.

САМОТВЕРДЕЮЩИЕ КОМПОЗИЦИИ НА ОСНОВЕ ЖИДКОГО СТЕКЛА

2130 С

Жидкость

600

1200

1800

Рис. 30. Полиморфные превращения (кривая Бредига)

C,s

Рассмотрим более подробно материалы, содержащие C2S, и их свойства.

Свойства двухкальциевого силиката и содержащих его материалов

Двухкальциевый силикат. Ортосиликат кальция (2СаО • Si02) существует в четырех модификациях: а, а’, р и у. Полиморфные превращения двухкальциевого силиката наглядно иллюстри­руются кривой М. Бредига, представленной на рис. 30. При на­гревании наблюдается следующий пор’ядок полиморфных превра­щений: y^-a’-t-a, а при охлаждении a — v a’ — v p ->- 7 [35 ].

A.—C2S устойчив при температурах выше 1447° С, при темпе­ратуре 1447° С переходит в a’—C2S.

Ее’—C2S при нагревании, начиная от у-модификации, устойчив в интервале температур 850—1447° С; при охлаждении а’—C2S никогда не получается 7—C2S; при 670° С образуется р—C2S, а последний при температуре ниже 525° С медленно переходит в у—C2S. Плотность a—C2S 3,4 г/см3.

Р—C2S является мета — стабильной модификацией. При охлаждении чистый Р—C2S переходит в у-мо- дификацию. Плотность р— QS 3,28 г/см3. В присут­ствии примесей этот пере — ход может затянуться или |> вообще не произойти. ^

У—C2S образуется толь­ко при охлаждении других модификаций и представ­ляет собой наиболее ста­бильную фазу. Она устой­чива при температуре ниже 780—830° С. Плотность у—C2S 2,97 г/см3.

Фазовые переходы: расплав a, a ^ а’ и a’ ^ р являются обратимыми, а превращения р-v у и у—а’ идут только в одном направлении.

Из-за большой разницы в плотности переход р—C2S в у—C2S сопровождается увеличением объема примерно на 12%, что при­водит к саморассыпанию шлака

Металлургические шлаки. Большое количество двухкальцие­вого силиката содержится в саморассыпающихся шлаках ферро­хромового производства, электропечных, мартеновских и до­менных шлаках. Саморассыпающиеся шлаки представляют интерес

Таблица 10. Средний химический состав шлаков от производства феррохрома на различных заводах СССР

Завод

Химический состав, %

Колебан ие удельной поверх­ности шлака, см’/г

СаО

Si О,

А1,0,

MgO

Сг. О,

FeO

Актюбинский

50—54

25,0—

5,1—

9.0—

3,1—

0,30—

1450—

29,5

6.5

10,2

9,6

1.7

1800

Серовский

49—

26,2—

6,5-8

9,5—

2—3

0,82—

1350—

52,3

27,7

10,0

1,4

1800*

Челябинский

48,0—

19,5—

4,0—

7 5—

3,0—

0,10—

1300—

52,3

30,0

6,7

12,0

12 5

3,3

1700 *

Запорожский

52—55

26—29

4—7

8—10

2—8

0,4—

1300—

0,9

2700

* После ввода в строй на этнх заводах цехов сепарации и просеивания шлака его удельная поверхность составляет 2000—2500 см2/г.

По двум соображениям. Во-первых, склонность шлака к само­рассыпанию косвенно указывает на высокое содержание в нем двухкальциевого силиката. Во-вторых, саморассыпающийся шлак является тонкодисперсным материалом и перед употреблением не требует дополнительного размола.

Саморассыпающиеся шлаки феррохромового производства. Та­кой шлак имеется в больших количествах на Челябинском элек­трометаллургическом комбинате, Актюбинском, Серовском и За­порожском ферросплавных заводах. Минералогический состав феррохромового шлака следующий [20]: 65% у—2Ca0Si02; 5% р—2СаО Si02; 20—25% шпинели Mg0Al203, FeO (Al, Cr)203.

Химический состав феррохромового шлака различных заводов представлен в табл. 10.

В табл. 11 приводятся полученные нами данные по определе­нию величины удельной поверхности, влажности, химического состава и активности образцов шлака всех четырех ферросплавных заводов. Для шлаков Челябинского и Актюбинского заводов удалось установить длительность их хранения в отвале и тем самым выявить влияние возраста шлака на его свойства.

Шлаки четырех заводов по химическому составу немного раз­личаются. В пределах одного и того же завода химический состав и основность различных партий шлака характеризуется доста­точно высокой стабильностью.

Активность шлака в основном определяется его возрастом (продолжительностью хранения) при прочих равных условиях. Косвенным показателем возраста шлака в большинстве случаев может быть его влажность. С повышением влажности активность снижается.

Активность шлака тем больше, чем выше его удельная поверх­ность, о чем можно судить при сравнении двух образцов Запорож­ского шлака (см. № 16 и 15 в табл. 11).

Саморассыпающиеся электропечные, мартеновские и доменные шлаки. Электропечные и мартеновские шлаки могут также служить отвердителями жидкого стекла, однако химический состав шлаков, даже для одной и той же марки стали, от плавки к плавке ко­леблется (табл. 12), степень рассылаемое™ шлаков и соответ­ственно их активность различны, что, естественно, осложняет получение ЖСС со стабильными свойствами. Мартеновские само­рассыпающиеся шлаки по составу и свойствам аналогичны элек­тропечным.

Саморассыпающиеся доменные шлаки в исходном состоянии имеют удельную поверхность 600—1000 см2/г и твердеют с жидким стеклом очень медленно (2,5—3,5 ч). После домола шлака до удельной поверхности 4000—5500 см2/г активность его суще­ственно возрастает — время твердения композиций составляет 45—60 мин. Нет сомнений в том, что доменные шлаки после домола можно применять в качестве отвердителей для смесей на жидком стекле, что подтверждается также данными X. И. Виш­някова и работами французского Технического центра литейного производства.

Нефелиновый шлам. Нефелиновый шлам представляет собой побочный продукт производства глинозема из нефелиновых руд. Большое количество этого материала имеется на Волховском алюминиевом заводе им. Кирова, Пикалевском глиноземном ком­бинате им. 50-летия СССР и Ачинском глиноземном комбинате. Сырьевые ресурсы нефелинового шлама практически неогра­ниченны.

По минералогическому составу нефелиновый шлам содержит 80—85% Р—2Ca0Si02. В связи с этим шлам как отвердитель ведет себя так же, как и чистый р—2СаО Si02, что подтверждается кривыми 1 и 2 рис. 29.

Данные о химическом составе нефелинового шлама на двух заводах (табл. 13) за длительный период производства свидетель­ствуют о незначительных колебаниях в составе и высокой стабиль­ности этого материала.

По минералогическому составу нефелиновый шлам и ферро­хромовый шлак различаются главным образом тем, что в первом двухкальциевый силикат находится в p-форме, а во втором — в у-форме. Стабилизируют p-форму, т. е. препятствуют ее пере­ходу в у-модификацию, такие примеси, как окислы бора, хрома, фосфора, а также присутствие небольших количеств щелочи. По-видимому, повышенное содержание щелочей в нефелиновом шламе (до 2,2—2,8%) оказывает стабилизирующее действие на Р—C2S, препятствуя его саморассыпанию.

Из изложенного ясно, что наиболее перспективными материа­лами для отверждения жидкого стекла, являются саморассыпа-

Таблица 12. Физико-химические свойства образцов саморассыпающегося шлака электропечного производства

Марка стали

Химический состав (основные окислы), %

СаО Si О,

Удель­ная поверх­ность, см2/г

Актив­ность, мнн

СаО

Si О,

МпО

AIsO,

MgO

110Г13Л 110Г13Л

35Л

52,08

56,0

59,43

22,74 21,60 19,81

0,90 2,10 0,50

3,35 4,20

13,75 11,85

2,29

2,6

3,0

2440 1680 900

38 13

65

Ющийся феррохромовый шлак и нефелиновый шлам. В принципе возможно применение для этой цели металлургических шлаков других производств — электропечных, мартеновских и доменных, однако они уступают первым двум. материалам по активности и стабильности. Процессы твердения ЖСС на жидком стекле с двухкальциевым силикатом и содержащими его материалами будут рассмотрены в самостоятельном разделе.

Таблица 13. Химический состав (%) образцов нефелинового шлама

Завод

СаО

Si О,

AI2Os

Fe,0,

Na20+K20

П. п. п.

Волховский

54,37

30,42

3,45

2,90

2,26

2,30

Пикалевский

56,54

29,67

2,96

2,98

2,79

2,55

Комментирование и размещение ссылок запрещено.

Комментарии закрыты.